X-RAY DIFFRACTION AND GEOCHEMICAL STUDIES ON URANIUM MINERALS FROM JOGIPALLE PEGMATITE, NELLORE SCHIST BELT, ANDHRA PRADESH: PARAGENETIC IMPLICATIONS

*Yamuna Singh, R. Viswanathan, L.S.R. Reddy and M. Sai Baba

Atomic Minerals Directorate for Exploration and Research, Begumpet, Hyderabad

*E-mail: yamunasingh2002@yahoo.co.uk

Abstract

The uranium ore sample used in this study occurs as hand-pickable lumps and grains in the Jogipalle pegmatite, Nellore Schist Belt, Andhra Pradesh. Powder X-ray diffraction (XRD) studies on separated uranium minerals (UMs) have revealed the presence of both primary (uraninite) and secondary (ianthinite, clarkeite, curite and â-uranophane) uranium minerals, which are mostly characterised by their sharply-defined reflections. The crystallographic parameters of various UMs are: Uraninite-1 and 2 unit cell dimension (a_0) = 5.4758 and 5.4422 Å and unit cell volume (V) = 164.08 and 161.18 Å³; clarkeite a_0 = 3.9473 Å, b_0 = 3.9473 Å, c_0 = 17.6835 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$, V = 238.628 Å³; curite $a_0 = 12.6292$ Å, $b_0 = 13.2035$ Å, $c_0 = 8.3646$ Å, V = 1394.81 Å³; and $\beta = 12.6292$ Å, $b_0 = 13.2035$ Å, $b_0 = 13.203$ uranophane $a_0 = 13.9481 \text{ Å}$, $b_0 = 15.4688 \text{ Å}$, $c_0 = 6.6362 \text{ Å}$, $\alpha = \gamma = 90^{\circ}$, $\beta = 91.3^{\circ}$, $V = 1430.90 \text{ Å}^3$. Out of two, one uraninite has a_o of 5.4758 Å, which is more than the value given for the uraninite standard (5.4645 Å), suggesting its anomalous nature and formation of uraninite (primary) under high temperature condition (\sim 500-550°C). In contrast, another uraninite has a = 5.4422 Å, reflecting its oxidized nature. It, thus, suggests that after their formation, the uraninites have been subjected to oxidation leading to the formation of secondary uranium minerals (SUMs) with a relict core of black mineral (uraninite) encircled by successive zones of SUMs, namely, black (ianthinite, in traces), orange (clarkeite-curite) and yellow (β-uranophane). Based on available mineralogical data, the inferred paragenetic sequence of the investigated uranium minerals is: Uranium oxide (primary uraninite) > uranium oxide (altered uraninite) > uranium oxide hydrate (ianthinite) > sodium-potassium uranium oxide (clarkeite) - lead-uranium oxide hydrate (curite) > calcium uranyl silicate hydroxide hydrate (β-uranophane). Uraninite-1 contains high U₂O₈ (74.25%), ThO₂ (7.96%), PbO (7.73%) and rare earth elements (16214 ppm), whereas, $SiO_{2}(1.03\%)$, CaO(0.82%) and $Fe_{2}O_{3}(0.33\%)$ contents are low. Chemically, â-uranophane analysed 47.42% U₃O₉, 4.75% CaO, and 19.15% SiO₂.

Keywords: X-ray diffraction. Mineralogy. Uraninite. Ianthinite. Clarkeite. Curite. β-Uranophane. Nellore Schist Belt. Andhra Pradesh. Paragenesis.